METADATA AND NUMERICAL DATA CAPTURE: Excess Volume: $V_{m,12}^{E}$ (2 - Components)

Guided Data
Capture (GDC)

This tutorial describes

METADATA AND NUMERICAL DATA CAPTURE:

for 2-component

EXCESS VOLUME: VE_{m,12}

with the Guided Data Capture (GDC) software.

NOTE:

The tutorials proceed sequentially to ease the descriptions. It is not necessary to enter *all* compounds before entering *all* samples, etc.

Compounds, samples, properties, etc., can be added or modified at any time.

However, the hierarchy must be maintained (i.e., a property cannot be entered, if there is no associated sample or compound.)

The experimental data used in this example is from:

J. Chem. Eng. Data 1997, 42, 128-131

Binary Mixtures of Butanol + Pentane, + Hexane, + Heptane, + Octane, + 2,2,4-Trimethylpentane, and + Carbon Tetrachloride. 1. Excess Molar Volumes at 288.15 K and 298.15 K and Refractive Indexes at 298.15 K

Jagan Nath* and Jai Gopal Pandey

Chemistry Department, Gorakhpur University, Gorakhpur 273009, India

Excess molar volumes, $V_{\rm m}^{\rm E}$, have been measured for binary mixtures of butanol (n-C₄H₉OH) + pentane (n-C₅H₁₂), + hexane (n-C₆H₁₄), + heptane (n-C₇H₁₆), + octane (n-C₈H₁₈), + 2,2,4-trimethylpentane (2,2,4-TMP), and + carbon tetrachloride (CCl₄) at 288.15 K and 298.15 K, and refractive indexes, $n_{\rm D}$, have been measured for these mixtures at 298.15 K. At both temperatures $V_{\rm m}^{\rm E}$ has been found to be positive throughout the entire range of composition for xn-C₄H₉OH + (1 - x)n-C₇H₁₆ and + (1 - x)n-C₈H₁₈. At both temperatures 288.15 K and 298.15 K, $V_{\rm m}^{\rm E}$ is positive at low mole fractions of n-C₄H₉OH and negative at its higher mole fractions in the case of mixtures of n-C₄H₉OH with n-C₅H₁₂, n-C₆H₁₄, 2,2,4-TMP, and CCl₄. Values of $V_{\rm m}^{\rm E}$ and $n_{\rm D}$ for the various mixtures of n-C₄H₉OH have been fitted in smoothing equations.

128

Excess Volume $(V_{m,12}^E)$ for the binary system 1-butanol + n-pentane

at p = 101.3 kPa and T = 288.15 K and 298.15 K

Table 1. Experimental Values of the Excess Molar Volumes, $V_{\rm m}^{\rm E}$, for n-C₄H₉OH + n-C₅H₁₂, + n-C₆H₁₄, + n-C₇H₁₆, + n-C₈H₁₈, + 2,2,4-TMP, and + CCl₄ at 288.15 and 298.15 K

Х	$V_{m}^{\rm E}/{\rm cm}^{3}{ m \cdot mol}^{-1}$	X	$V_{\rm m}^{\rm H}/{\rm cm}^3{ m \cdot mol}^{-1}$	X	$V_{m}^{\mathrm{H}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	X	$V_{m}^{\rm H}/{ m cm}^{3}{ m \cdot mol}^{-1}$
xn-C ₄ H ₉ OH + $(1 - x)n$ -C ₅ H ₁₂							
$T=288.15~\mathrm{K}$							
0.0442	0.025	0.3024	-0.096	0.5398	-0.276	0.7976	-0.192
0.0709	0.037	0.3232	-0.117	0.5823	-0.284	0.8466	-0.144
0.1186	0.036	0.3727	-0.160	0.6240	-0.282	0.9392	-0.048
0.1733	0.017	0.4118	-0.198	0.7055	-0.259		
0.2811	-0.071	0.5141	-0.261	0.7536	-0.228		
$T = 298.15 \; \mathrm{K}$							
0.0440	0.031	0.2769	-0.073	0.5696	-0.245	0.8914	-0.119
0.0700	0.039	0.3341	-0.116	0.6539	-0.251	0.9388	-0.069
0.1193	0.030	0.3960	-0.167	0.7108	-0.243		
0.2046	-0.020	0.4780	-0.209	0.7652	-0.219		
0.2302	-0.037	0.5180	-0.229	0.8404	-0.168		

This data set is considered here.

NOTE: This data could be captured as two data sets with temperature constrained in each, but here temperature will be included as a variable. Generally, operation of the GDC software is easier (*i.e.*, less repetitious), if the number of separate data sets is minimized.

Experimental Method Info:

Methods. (i) Excess molar volumes, $V_m^{\rm E}$, were measured with an imprecision of the order of ± 0.002 cm³·mol⁻¹, using a two-limbed Pyrex glass dilatometer which was similar to that used in earlier measurements (Nath and Chaudhary, 1992; Nath and Rashmi, 1990).

The dilatometer (mounted on a stand) was immersed in a thermostat which was controlled to ± 0.01 K.

Uncertainty estimate:

SELECTION of # of Phases in Equilibrium and # of Constraints

Specification of constraints, constraint values, and constraint units

Measurement definition and Data presentation

NOTE: Simple CUT/PASTE procedures can be used within the table to convert the original table into the required number of columns. (This can also be done externally in spreadsheet software, e.g., EXCEL.)

END

Continue with other compounds, samples, properties, reactions, etc...

or save your file and exit the program.